Abstract

A rod-shaped BiPO4 photocatalyst was prepared by a simple hydrothermal method for light-induced catalytic degradation of stable aromatic compounds such as benzene in gas phase under ambient conditions. The samples were subjected to various technical characterizations including X-ray diffraction (XRD), transmission electron microscopy (TEM), UV/vis and FTIR spectrum, to determine the crystal structure, morphology, and optical properties of the as-prepared photocatalysts. Results indicate that BiPO4 exhibits much higher photocatalytic activity and stability under UV light irradiation than that of commercial TiO2 (Degussa P25) in the degradation of benzene to CO2. The active radical species involved in the degradation reactions over BiPO4 photocatalyst have been investigated by the spin-trapping electron paramagnetic resonance (EPR) spectra and a photoluminescence technique. Theoretical calculations reveal that BiPO4 contains highly-dispersive conduction bands, enabling high mobility of the photo-generated carries and therefore leading to fast charge transfer and separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.