Abstract

Supercritical antisolvent precipitation route was employed for the first time to prepare Gd-doped ZnO photocatalysts to be tested in the photocatalytic degradation of atrazine under visible light. Physical-chemical characterization data show that the addition of Gd does not change the crystalline structure of ZnO and that Gd3+ ions are successfully introduced into the semiconductor lattice, leading to a decrease of band gap energy value and inducing the formation of oxygen vacancies inside the ZnO framework. The photocatalytic performances of the as-prepared samples are determined by analyzing the degradation of atrazine under visible light irradiation. The doped photocatalyst with a Gd loading of 0.7 mol% exhibits the highest photocatalytic activity under visible light irradiation compared to the other prepared photocatalysts. The possible reaction mechanism of the optimized photocatalyst is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.