Abstract

Photocatalyst has been extensive interest because of it’s new innovation to the reduce the contamination in the environment. A straight forward and economical procedure has been employed by sol-gel technique for the co-doping of Mn2+ and Ni2+ into TiO2. The co-doped and undoped photocatalysts were described by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray Spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), UV-Visible Diffused Reflectance Spectroscopy (UV Vis-DRS), Transmission electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET). The portrayal results shows that anatase and rutile mixed phase was observed for some co-doped nanocatalysts and the remaining catalysts exhibits anatase phase only. It was observed by FT-IR that the shifting of frequency of Ti-O-Ti in the catalysts was seen due to substitutional doping of Mn and Ni by replace Ti and O, further the photocatalysts shows rough morphology, irregular shape of particle with size (6.5nm) and having high surface area (135.70 m2/g), less band energy (2.7 eV). The photocatalytic action of these materials was assessed by the degradation of Allura red (AR) as a contaminant. The results shows that AR has degraded within 60 minutes at doping concentrations 0.25 Wt% of Mn2+ion and 1.0 Wt% of Ni2+ ion in TiO2 (NMT2) at an optimum reaction parameters pH-4, catalyst dose 0.070g/L and at AR initial dye concentration 0.010g/L.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.