Abstract

In this study, Ag2CrO4@NiFe-LDH nanoparticles were synthesized by hydrothermal method for photocatalytic degradation of Alizarin Red (AR) dye. Three composites with different molar percentages were prepared, among which 50%Ag2CrO4@50%NiFe-LDH composite was the best sample with a removal rate of 97.1% in AR degradation. Also, the properties, structure, and characteristics of pure Ag2CrO4 and NiFe-LDH and their composites were determined by XRD, FESEM, FTIR, EDX mapping, and UV-visible analyses. It was found that Ag2CrO4@NiFe-LDH composites with the formation of heterogeneous structure of Z-scheme, in addition to increasing the active sites and increasing the specific surface, decrease the recombination rate of pure Ag2CrO4 and NiFe-LDH. Also, the Box-Behnken design technique, which is one of the most common designs used in response surface methodology, was used to optimize the operating conditions and investigate the effect of 4 independent parameters: catalyst amount, solution concentration, pH, and light intensity. The importance of independent parameters and their interactions were determined by ANOVA. By means of numerical optimization, the optimal values of the selected parameters equal to 1.34 g/L of catalyst, concentration of 16.45 mg/L, pH = 10.74, and light intensity of 15.53 W were obtained as optimal conditions with a desirability coefficient of 1.00 and an absorption value of 89.34%. The closeness of adjusted R2 (0.9838) and predicted R2 (0.9507) values show that this model can be successfully used for prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.