Abstract

The photocatalytic degradation of 2-chlorophenol (2-CP) in aqueous solution was studied using Co-doped TiO2 nanoparticles catalyst. The catalyst samples were synthesized by a sol–gel technique from TiCl4 with different concentrations of Co(III) dopant and calcination temperatures. The typical composition of the prepared Co-doped TiO2 was Ti1−xCoxO2, where x values ranged from 0.004 to 0.14. Several analytical tools, such as X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area measurement, X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDAX), were used to investigate the nanoparticles structure, size distribution, and composition. The catalytic activity of the prepared nanoparticles was measured in a batch photoreactor containing appropriate solutions of 2-CP with UV irradiation of 100W. High performance liquid chromatography (HPLC) was used for analyzing the concentration of 2-CP in solution at different time intervals during the photodegradation experiment. Parameters affecting the photocatalytic process such as catalyst crystallinity, light absorption efficiency, concentration of the catalyst and the dopant, solution pH, and 2-CP concentration have been investigated.Results obtained revealed that Co-doped TiO2 showed high activity for UV-photocatalytic degradation of 2-CP. The surface area of the catalyst was measured to be 39.7m2g−1. The photodegradation process was optimized by using 10mg/L Co-doped TiO2 with Co doping concentration of 0.036, after 3h irradiation. The efficiency values of the 2-CP photodegradation were 93.4% and 96.4% at solution pH of 9 and 12, respectively. The photodegradation follows a pseudo-first-order reaction and the observed rate constant values change with the 2-CP concentration. The optical absorption properties of the samples were also measured. The presence of Co ions in the TiO2 structure caused a significant absorption shift towards the visible region. The photodegradation efficiency matched the maximum light absorption efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.