Abstract

In an attempt to face serious environmental hazards, the degradation of microcystin-LR (MC-LR), one of the most common and more toxic water soluble cyanotoxin compounds released by cyanobacteria blooms, was investigated using nitrogen doped TiO2 (N-TiO2) photocatalyst, under UV-A, solar and visible light. Commercial Degussa P25 TiO2, Kronos and reference TiO2 nanopowders were used for comparison. It was found that under UV-A irradiation, all photocatalysts were effective in toxin elimination. The higher MC-LR degradation (99%) was observed with Degussa P25 TiO2 followed by N-TiO2 with 96% toxin destruction after 20min of illumination. Under solar light illumination, N-TiO2 nanocatalyst exhibits similar photocatalytic activity with that of commercially available materials such as Degussa P25 and Kronos TiO2 for the destruction of MC-LR. Upon irradiation with visible light Degussa P25 practically did not show any response, while the N-TiO2 displayed remarkable photocatalytic efficiency. In addition, it has been shown that photodegradation products did not present any significant protein phosphatase inhibition activity, proving that toxicity is proportional only to the remaining MC-LR in solution. Finally, total organic carbon (TOC) and inorganic ions (NO2−, NO3− and NH4+) determinations confirmed that complete photocatalytic mineralization of MC-LR was achieved under both UV-A and solar light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.