Abstract
This study evaluated the application of a continuous-flow photocatalytic reactor for the control of two mobile-derived pollutants, methyl-tertiary butyl ether (MTBE) and naphthalene, present at in-vehicle levels. Variables tested for this study included the hydraulic diameter (HD), stream flow rate (SFR), relative humidity (RH), and feeding type (FT). The fixed parameters included contaminant concentration, ultraviolet light source, and the weight of TiO 2. In all experimental conditions the adsorption process reached equilibrium within 30 to 180 min for the target compounds, and the outlet concentrations of the photocatalytic oxidation (PCO) reactor while operating reached a steady state within 60 to 180 min. The degradation of the target compounds was dependent on RH, HD, FT, or SFR. The PCO system exhibited high degradation (up to nearly 100% for certain conditions) and mineralization efficiencies of target compounds, suggesting that this system can effectively be employed to improve indoor air quality. Moreover, it was confirmed that trichloroethylene at urban-ambient level also could enhance the degradation efficiency of naphthalene when applying the PCO technology inside vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.