Abstract

The solid acid catalyst, N–F codoped TiO2/SiO2 composite oxide was prepared by a sol–gel method using NH4F as nitrogen and fluorine source. The prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV–Visible diffuse reflectance spectroscopy (UV–Vis), ammonia adsorption and temperature-programmed desorption (NH3-TPD), in situ Fourier transform infrared spectroscopy (FT-IR) and N2 physical adsorption isotherm. The photocatalytic activity of the catalyst for acrylonitrile degradation was investigated under simulant solar irradiation. The results showed that strong Lewis and Brønsted acid sites appear on the surface of the sample after N–F doping. Systematic investigation showed that the highest photocatalytic activity for acrylonitrile degradation was obtained for samples calcined at 450°C with molar ratio (NH4F to Ti) of 0.8. The degradation ratio of 71.5% was achieved with the prepared catalyst after 6-min irradiation, demonstrating the effectiveness of photocatalytic degradation of acrylonitrile with N–F codoped TiO2/SiO2 composite oxide. The photocatalyst is promising for application under solar light irradiation. Moreover, the intermediates generated after irradiation were verified by gas chromatography–mass spectrometry (GC–MS) analysis and UV–Vis spectroscopy to be simple organic acids with lower toxicity, and the degradation pathway was also proposed for acrylonitrile degradation with the prepared catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.