Abstract

The fundamental challenge of reducing CO2 into more valuable energy-containing compounds depends on revealing new catalysts for this process. By removal of the long-standing limitation of α-diimine ligation, which is dominant in photocatalytic complexes in this area, new visible-light, CO2-reducing photocatalysts based on Mn and Re supported by κ2-PN phosphinoaminopyridine ligands were identified. These catalysts, [M{κ2-(Ph2P)NH(NC5H4)}(CO)3Br], displayed excellent product selectivity and, by a change of only the metal center, gave a dramatic product switch from CO with M = Mn to HCO2H with M = Re. The catalyst systems were explored with variation of the ligand, electron donor, solvent, and photosensitizer. The products were definitively traced using 13CO2 as a substrate. Both complexes quenched the excited-state photosensitizer Ru(bpy)32+*, suggesting oxidative quenching as a potential entry into the catalytic cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.