Abstract

The photocatalytic transformation of CO2 to valuable man-made feedstocks is a promising method for balancing the carbon cycle; however, it is often hampered by the consumption of extra hole scavengers. Here, a synergistic redox system using photogenerated electron-hole pairs was constructed by employing a porous carbon nitride with many cyanide groups as a metal-free photocatalyst. Selective CO2 reduction to CO using photogenerated electrons was achieved under mild conditions; simultaneously, various alcohols were effectively oxidized to value-added aldehydes using holes. The results showed that thermal calcination process using ammonium sulfate as porogen contributes to the construction of a porous structure. As-obtained cyanide groups can facilitate charge carrier separation and promote moderate CO2 adsorption. Electron-donating groups in alcohols could enhance the activity via a faster hydrogen-donating process. This concerted photocatalytic system that synergistically utilizes electron-hole pairs upon light excitation contributes to the construction of cost-effective and multifunctional photocatalytic systems for selective CO2 reduction and artificial photosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call