Abstract
Photocatalysis is a potentially promising approach to harvest aromatic compounds from lignin. However, the development of an active and selective solid photocatalyst is still challenging for lignin transformation under ambient conditions. We herein report a mild photocatalytic oxidative strategy for C–C bond cleavage of lignin β-O-4 and β-1 linkages using a mesoporous graphitic carbon nitride catalyst. Identifications by solid-state NMR techniques and density functional theory (DFT) calculations indicate that π–π stacking interactions are most likely present between the flexible carbon nitride surface and lignin model molecule. Besides, low charge recombination efficiency and high specific surface area (206.5 m2 g–1) of the catalyst also contribute to its high catalytic activity. Mechanistic investigations reveal that photogenerated holes, as the main active species, trigger the oxidation and C–C bond cleavage of lignin models. This study sheds light on the interaction between complex lignin structures an...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.