Abstract

The first photosensitization of a rhodium-based catalytic system for CO2 reduction is reported, with formate as the sole carbon-containing product. Formate has wide industrial applications and is seen as valuable within fuel cell technologies as well as an interesting H2 -storage compound. Heterogenization of molecular rhodium catalysts is accomplished via the synthesis, post-synthetic linker exchange, and characterization of a new metal-organic framework (MOF) Cp*Rh@UiO-67. While the catalytic activities of the homogeneous and heterogeneous systems are found to be comparable, the MOF-based system is more stable and selective. Furthermore it can be recycled without loss of activity. For formate production, an optimal catalyst loading of ∼10 % molar Rh incorporation is determined. Increased incorporation of rhodium catalyst favors thermal decomposition of formate into H2 . There is no precedent for a MOF catalyzing the latter reaction so far.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.