Abstract
Photocatalytic enantioselective epoxidation of terminal olefins using a mononuclear non-heme chiral manganese catalyst, [(R,R-BQCN)MnII]2+, and water as an oxygen source yields epoxides with relatively high enantioselectivities (e.g., up to 60% enantiomeric excess). A synthetic mononuclear non-heme chiral Mn(IV)-oxo complex, [(R,R-BQCN)MnIV(O)]2+, affords similar enantioselectivities in the epoxidation of terminal olefins under stoichiometric reaction conditions. Mechanistic details of each individual step of the photoinduced catalysis, including formation of the Mn(IV)-oxo intermediate, are discussed on the basis of combined results of laser flash photolysis and other spectroscopic methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.