Abstract
The photocatalysis process, which is effective, economical, and environmentally friendly can overcome rapidly increasing environmental problems, has shown rapid development in recent years. Nontoxic, low-cost natural minerals are often used in photocatalysis processes that remove organic pollution from wastewater. In this study, a selective method for the removal of crystal violet (CV) from aqueous solutions using nanocomposite of nickel oxide/zinc oxide nanoparticles (NiO/ZnO) supported on kaolinite photocatalyst was investigated. The raw kaolinite, bare NiO, bare ZnO and nanocomposite samples were characterized by the XRD, TEM, SEM-EDX, XPS and FTIR techniques. The photocatalytic performances of kaolinite-NiOZnO (K-NiO/ZnO) nanocomposite and bare samples were also investigated and comparatively evaluated by the photodegradation of CV (cationic dye) dye under visible light irradiation. The effects of various parameters such as the dosage of photocatalysis, contact time, and initial dye concentration on the rate of removal of dye were investigated and optimized. The kinetics of decolorization by samples can be well described by the pseudo-first-order model. Finally, it can be used in advanced oxidative processes for the degradation of organic pollutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.