Abstract

Copper nanoparticles were synthesized using Manilkara zapota leaf extract. The synthesis of the nanoparticle was primarily visualized when the colour of the reaction mixture turned into reddish-brown. Biosynthesized nanoparticles were characterized by UV-vis, FT-IR, XRD, SEM and EDX. The UV spectra showed maximum absorption at 584 nm. FT-IR studies showed stretching frequency at 592.76 cm-1, which is the fingerprint region for Cu-O bond. The crystallinity of the synthesized copper nanoparticles (Mz-Cu NPs) was revealed through XRD analysis. The synthesized Mz-Cu NPs were spherical with an average size of 18.9-42.5 nm and it was shown by SEM analysis. EDX analysis displayed that the nano sample contains 58 % of copper. The antimicrobial property of the synthesized nanoparticles was evaluated against fungal plant pathogens Rhizoctonia solani (MTCC 12232), Sclerotium oryzae (MTCC 12230) and bacterial species, namely Bacillus subtilis (ATCC 23857), Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), Vibrio harveyi (ATCC 35084), Vibrio parahaemolyticus (ATCC 33845). In in-vitro haemolytic assay, the particle showed 5.73, 3.34, 0.5 % hemolysis at 100, 50, 25 μg/mL concentration respectively. In the antiproliferative assay, the IC50 values of MCF7 and Vero cells were found to be 53.89 and 883.69 μg/μl. The particle degraded Methyl violet, Malachite green and Coomassie brilliant blue by 92.2, 94.9 and 78.8 %, within 50, 40 and 60 min, respectively, through its photocatalytic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call