Abstract

Synthesizing nanoparticles in biotemplates has been cited as one of the most promising way to obtain monodispersed inorganic nanoparticles. In this method, uniform voids in porous materials serve as hosts to confine the synthesized nanoparticles. DNA template can be described as a smart glue for assembling nanoscale building blocks. Here we investigate the photocatalytic, antibacterial, cytotoxic, and bioimaging applications of DNA capped CdS. XRD, SEM, TEM, UV-visible absorption, and photoluminescence spectra were used to study structural, morphological, and optical properties of CdS nanoparticles. Prepared CdS nanoparticles exhibit visible fluorescence. The photocatalytic activity of CdS towards Rhodamine 6G and Methylene blue are 64% and 91% respectively. A disc-diffusion method is used to demonstrate antibacterial screening. It was shown that CdS nanoparticles inhibit Gram-positive bacteria and Gram-negative bacteria effectively.DNA capped CdS shows higher activity than uncapped CdS nanoparticles. MTT cell viability assays were carried out in HeLa cells to investigate the cytotoxicity for 24h. At a concentration 2.5µg/ml, it shows 84% cell viability and 43% viability at12.5µg/ml. The calculated LC50 value is equal to 8µg/ml. These DNA capped CdS nanoparticles were taken for an in-vitro experiment with HeLa cells to exhibit the possibility of bioimaging applications. The present study suggests that the synthesized CdS nanoparticles could be a potential photocatalyst, antibacterial agent, and biocompatible nanoparticle for bioimaging applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call