Abstract

The pollution of tetracycline (TC) had attracted more and more attention due to its unprecedented use and potential hazards. The S-scheme BiOI/BiOIO3 p-n heterojunction was successfully fabricated by in-situ solvothermal treatment of BiOIO3, and was used for the removal of TC from aqueous solutions. The results demonstrated that the construction of S-scheme p-n heterojunction could significantly improve the removal of TC by photocatalytic adsorption/degradation synergism. The removal rate of TC was significantly enhanced after solvothermal modification. The three main reasons for the enhanced removal efficiency were as follows: first, the light absorption range of the BiOIO3 was enhanced by solvothermal treatment; secondly, the construction of the heterojunction was beneficial to the valid separation and migration of the photo-generated carriers; finally, the adsorption of TC enhanced the speed of TC reaching the semiconductor interface and reacting with active species. Trapping tests were conducted to reveal that •O2− and 1O2 are the main reactive species for TC degradation. The nine degradation products were identified by the high performance liquid chromatography-mass spectrometry (HPLC-MS), and the three reaction pathways were deduced. A possible S-scheme p-n heterojunction photocatalytic mechanism was presented on the basis of band structures and active species capturing experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.