Abstract
In this study, CeO2 photocatalyst was modified by composite with SiO2 to increase efficiency and improve photocatalytic activity. The as-prepared SiO2 particles have been incorporated into the precursor mixture of CeO2 by homogeneous precipitation and subsequent calcination process. The phase compositions of CeO2 before and after compositing with SiO2 were identified by X-ray diffraction (XRD). The morphology and particle size of CeO2/SiO2 composite was analyzed by high resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). The results showed SiO2 spheres with the particle size approximately 100–120nm, and a uniform layer of CeO2 nanoparticles with a diameter of about 5–7nm that were fully composite to the surfaces of SiO2. The X-ray photoelectron spectroscopy (XPS) technique was carried out in order to characterize the change in valence state and composite characteristic by shifted peaks of binding energies. The photocatalytic activity was studied through the degradation of Rhodamine B in aqueous solution under visible light exposure. The highest photocatalytic efficiency of CeO2/SiO2 composite was also obtained. To explain the high photocatalytic efficiency of CeO2/SiO2 composite, the proposed mechanism involves the high surface properties of the CeO2/SiO2 composite, as measured by Brunauer-Emmett-Teller (BET) method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.