Abstract

A novel kind of magnetically separable photocatalyst of cerrium-doped mesoporous titanium dioxide coated magnetite (Ce/MTiO2/Fe3O4) was prepared and its activities under UV and visible light were reported. The catalysts with Ce/MTiO2 shell and Fe3O4 core were prepared by coating photoactive Ce/MTiO2 onto a magnetic Fe3O4 core through the hydrolysis of tetrabutyltitanate (Ti(OBu)4, TBT) with precursors of ammonium ceric nitrate and TBT in the presence of Fe3O4 particles. The MTiO2 shell was for photocatalysis, the Fe3O4 core was for separation by the magnetic field and the doped Ce was used to enhance the photocatalytic activity of MTiO2. The morphological, structural and optical properties of the prepared samples were characterized by Brunauer-Emmett-Teller (BET) surface area, transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis absorption spectroscopy. The effect of cerrium-doped content on the photocatalytic activity was studied and the result revealed that 0.5 mol.% Ce/MTiO2/Fe3O4 exhibited highest photoactivity. The photocatalytic activities of obtained photocatalysts under UV and visible light were estimated by measuring the degradation rate of methylene blue (MB, 50 mg/L) in an aqueous solution. The results showed that the prepared photocatalyst was activated by visible light and used as effective catalyst in photooxidation reactions. In addition, the possibility of cyclic usage of the prepared photocatalyst was also confirmed. Moreover, Ce/MTiO2 was tightly bound to Fe3O4 and could be easily recovered from the medium by an external magnetic filed. So, the photocatalyst can be reused without any mass loss. It can therefore be potentially applied for the treatment of water contaminated by organic pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call