Abstract

Herein, we report on the use of vertically aligned multiwall carbon nanotubes (CNTs) films as support for ZnO/ZnS photocatalytic active nanostructures. The CNTs were synthetized via a hot-filament chemical vapor deposition (HfCVD), using Fe catalyst on top of Al2O3 buffer layer. Controlled point defects in the CNTs outer walls were created by exposure to a low pressure nonthermal water vapors diffusive plasma and acted as seeds for subsequent pulsed-electrodeposition of Zn nanoparticles. This was to achieve a direct and improved contact between the nanoparticles and CNTs. To obtain ZnO, ZnS and mix phase of ZnO/ZnS spread on CNTs, the oxidation, sulfurization and 2 steps subsequent annealing in oxygen and sulfur rich atmospheres were applied. High resolution transmission electron microscopy with energy dispersive x-rays spectroscopy in scanning mode, provided the chemical mapping of the structures. X-ray diffraction (XRD) analyses proved the hexagonal phase of ZnO and ZnS, obtained after oxidation in H2O and S vapors, respectively. In the case of the samples obtained by the 2 steps subsequent annealing, XRD showed mainly the presence of ZnO and a small amount of ZnS. The benefit of the secondary annealing in S vapor was seen as an absorption enhancement of the ZnO1−x S x @CNTs sample having the absorption edge at 417 nm, whereas the absorption edge of ZnO@CNTs was 408 nm and of ZnS@CNTs 360 nm. For all the samples, compared to the bare ZnO and ZnS, the absorption red shift was observed which is attributed to the CNTs involvement. Therefore, this study showed the double sides benefit to induce the absorption of ZnO of the visible light, one from S doping and second of CNTs involvement. The absorption enhancement had a positive impact on photocatalytic degradation of methyl blue dye, showing that ZnO1−x Sx@CNTs heteronanostructure was the best photocatalyst among the studied samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.