Abstract

The utilization of solar energy for the treatment of wastewater pollutants by photocatalysts has been considered a promising solution to address environmental problems. Herein, we have synthesized silver nanoparticle-doped strontium stannate (Ag-doped SrSnO3) nanorods by hydrothermal method followed by ultrasonic treatment. The developed nanocomposites were applied for photocatalytic reduction of p-nitrophenol (4-NP) and methylene blue (MB) mineralization under visible light illumination. The effect of hydrothermal duration time (16–25) h, Cetyltrimethylammonium bromide (CTAB) and silver nanoparticles (Ag NPs) concentration (0.5–2.5) wt% on the crystal, surface, optical, photoluminescence as well as photocatalytic activity were studied. A well-defined crystalline cubic phase of SrSnO3 was obtained. CTAB inhibits the crystal growth of SrSnO3. Reduction of 4-NP and MB mineralization were used as two-model reactions for testing the effect of Ag doping concentration on the photocatalytic activities of Ag/SrSnO3 under visible light illumination. The obtained results show that 2.0 wt% of Ag-doped SrSnO3 exhibits efficient photocatalytic reduction of 4-NP with 98.2% conversion within 5 min of reaction time. Also, 87% of the MB sample was mineralized after 1 h of visible illumination using 2.0% Ag/SrSnO3 in the presence of H2O2. Besides, we have discussed the possible photocatalytic mechanism for reduction of 4-NP and mineralization of MB using 2.0 wt% of Ag doped SrSnO3 under visible light illumination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.