Abstract

Herein, we describe a visible light-induced C(sp2)-H arylation method for quinoxalin-2(1H)-ones and coumarins using iodonium ylides without the need for external photocatalysts. The protocol demonstrates a broad substrate scope, enabling the arylation of diverse heterocycles through a simple and mild procedure. Furthermore, the photochemical reaction showcases its applicability in the efficient synthesis of biologically active molecules. Computational investigations at the CASPT2//CASSCF/PCM level of theory revealed that the excited state of quinoxalin-2(1H)-one facilitates electron transfer from its π bond to the antibonding orbital of the C-I bond in the iodonium ylide, ultimately leading to the formation of an aryl radical, which subsequently participates in the C-H arylation process. In addition, our calculations reveal that during the single-electron transfer (SET) process, the C-I bond cleavage in iodonium ylide and new C-C bond formation between resultant aryl radical and cationic quinoxaline species take place in a concerned manner. This enables the arylation reaction to efficiently proceed along an energy-efficient route.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call