Abstract
Metal-semiconductor hybrid nanomaterials are becoming increasingly popular for photocatalytic degradation of organic pollutants. Herein, a seed-assisted photodeposition approach is put forward for the site-specific growth of Pt on Au-ZnO particles (Pt-Au-ZnO). A similar approach was also utilized to enlarge the Au nanoparticles at epitaxial Au-ZnO particles (Au@Au-ZnO). An epitaxial connection at the Au-ZnO interface was found to be critical for the site-specific deposition of Pt or Au. Light on-off photocatalysis tests, utilizing a thiazine dye (toluidine blue) as a model organic compound, were conducted and confirmed the superior photodegradation properties of Pt-Au-ZnO hybrids compared to Au-ZnO. In contrast, Au-ZnO type hybrids were more effective toward photoreduction of toluidine blue to leuco-toluidine blue. It was deemed that photoexcited electrons of Au-ZnO (Au, ∼5 nm) possessed high reducing power owing to electron accumulation and negative shift in Fermi level/redox potential; however, exciton recombination due to possible Fermi-level equilibration slowed down the complete degradation of toluidine blue. In the case of Au@Au-ZnO (Au, ∼15 nm), the photodegradation efficiency was enhanced and the photoreduction rate reduced compared to Au-ZnO. Pt-Au-ZnO hybrids showed better photodegradation and mineralization properties compared to both Au-ZnO and Au@Au-ZnO owing to a fast electron discharge (i.e. better electron-hole seperation). However, photoexcited electrons lacked the reducing power for the photoreduction of toluidine blue. The ultimate photodegradation efficiencies of Pt-Au-ZnO, Au@Au-ZnO, and Au-ZnO were 84, 66, and 39%, respectively. In the interest of effective metal-semiconductor type photocatalysts, the present study points out the importance of choosing the right metal, depending on whether a photoreduction and/or photodegradation process is desired.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.