Abstract

Magnetic cerium-doped mesoporous titanium dioxide was synthesized by combining sol-gel method and calcination using tetrabutanate and ammonium cerium nitrate as precursors and Pluronic P123 as a template coating on iron oxide covered with carbon in ethanol. The magnetic Ce-doped catalyst showed only anatase structure with a slight increase in lattice parameters compared to the undoped catalyst. The Ce LIII-edge X-ray absorption near-edge spectroscopy (XANES) spectra showed Ce3+, and the cerium substitution doping into titanium dioxide was proposed. Degradation of S-metolachlor in aqueous magnetic photocatalyst suspension followed (pseudo) first-order kinetics in the presence of 0.5gL-1 of γ-Fe2O3@C@0.16mol% Ce-mTiO2 with a half-life of 55.18±1.63min. Fifteen degradation products were identified, and their transformation routes of the photocatalytic degradation were then proposed. Complementary toxicity assessment of the treated S-metolachlor solution was undertaken with Environment Canada's algal microplate assay measuring growth inhibition (72-h IC50) in the freshwater chlorophyte Pseudokirchneriella subcapitata. This test method revealed a significant decrease in toxicity (1.7-fold reduction after 180min of irradiation treatment), thereby confirming that the by-products formed following photocatalysis would be less harmful from an environmental point of view. Photocatalytic degradation of S-metolachlor thus appears to hold promise as a cost-effective treatment technology to diminish the presence of this herbicide in aquatic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call