Abstract

The performance of a reactor designed to convert volatile hydrocarbons to carbon dioxide and water by a combination of surface chemistry and UV radiation was tested under conditions relevant to horticulture. Air containing 65 to 1100 nL·L–1 ethylene gas passed through a bed of catalyst crystals at a rate of 0.1 to 2.0 L·min–1. The catalyst bed consisted of 14 g of zirconia-titania particles, 0.50 to 0.75 mm in size, that occupied the space between a 4-W UV lamp and a stainless-steel housing. Dew-point temperatures of the air passing through the reactor ranged from 5 to 22°C and internal reactor temperatures ranged from 20 to 80°C. Increasing internal reactor temperature, ethylene concentration, or air flow resulted in increasing ethylene photocatalysis by the reactor. Increasing dewpoint temperature of the air stream resulted in decreasing ethylene photocatalysis by the reactor. Operation of the reactor over a 120-day period showed that reactor design and catalyst performance were stable and robust during continuous duty. Our results demonstrate that the reactor performed well over a wide range of conditions and may be useful for applications in horticulture. This research was, in part, NASA sponsored, and a reactor similar in design to that used in our studies has been used for plant growth in space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.