Abstract

While magnetic supports have been widely used to immobilize homogeneous catalysts in organic chemistry, this strategy has so far found very little application in photocatalysis. Indeed, magnetic supports are dark colored, and thus compete for photon absorption with photocatalysts themselves. We have developed a series of core-shell Fe(0)-silica nanoparticles as supports for immobilizing the photosensitizer Ru(bpy)32+, featuring various silica shell thicknesses-16-34 nm SiO2-on 9 nm Fe cores. The supports and the resulting photocatalytic systems were studied for their magnetic, optical, and catalytic properties in the context of the photooxidation of citronellol, and we found that thicker silica shells lead to higher catalytic activity. We correlated this effect as well as Ru(bpy)32+ fluorescence and singlet oxygen generation to the absorption properties of the supports. We were able to reuse our optimal system three times with minimal loss of activity and achieved turnover numbers largely surpassing the performance of homogeneous Ru(bpy)32+. This work highlights the role of material design in the conception of new supports for applications in heterogeneous photocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.