Abstract

Controlling the ambident reactivity of thiocyanates in reaction manifolds has been a long-standing and formidable challenge. We report herein a photoredox strategy for installing thiocyanates and isothiocyanates in a controlled chemoselective fashion by manipulating the ambident-SCN through catalyst modulation. The methodology allows redox-, and pot-economical ‘on-demand’ direct access to both hydrothiophene and pyrrolidine heterocycles from the same feedstock alkenes and bifunctional thiocyanomalonates in a photocascade sequence. Its excellent chemoselectivity profile was further expanded to access Se- and N-heterocycles by harnessing selenonitriles. Redox capability of the catalysts, which dictates the substrates to participate in a single or cascade catalytic cycle, was proposed as the key to the present chemodivergency of this process. In addition, detailed mechanistic insights are provided by a conjugation of extensive control experiments and dispersion-corrected density functional theory (DFT) calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call