Abstract

Photocatalytic water splitting necessitates robust cocatalysts to accelerate the oxygen evolution reaction (OER). However, most OER cocatalysts are based on noble metal oxides. Besides, the loose interface between semiconductor and cocatalyst results in inefficient charge transfer. The fabrication of photocatalysts with integrated light-harvesting and catalytic centers for OER is therefore desired. Herein, we provide a photocarving strategy to create nitrogen vacancies (NVs) on polymeric carbon nitride (PCN). It is confirmed that the embedded NVs can function as active sites to catalyze OER, while promoting the transfer of the photogenerated charge for OER. As a result, PCN-NVs without any extra noble-metal cocatalyst assistance exhibit an enhanced oxygen evolution rate compared with the pristine PCN. Additionally, the PCN obtained from other precursors can also be engineered by this photocarving method, while promoting oxygen photosynthesis. This work provides an avenue to design light-transducers with combined light-harvesting and catalytic configurations for oxygen synthesis chemistry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.