Abstract
Solar-driven syngas generation by CO2 reduction provides a sustainable strategy to produce renewable fossil fuels. Nevertheless, this promising approach often suffers from tough CO2 activation, sluggish reaction kinetics and complex selectivity. Herein, we exquisitely constructed spatially directional charge transport channel over two-dimensional transition metal chalcogenide (TMC)-based heterostructure via a facile and universal electrostatic self-assembly method. Tailor-made positively charged non-conjugated insulating polymer of poly(diallyl-dimethyl-ammonium chloride) (PDDA) and negatively charged graphene oxide (GO) precursor as building blocks are controllably anchored on the TMC substrate, by which ultrathin PDDA layer is intercalated at the interface of GO and TMC. We ascertain that, in this customized sandwiched heterostructures, PDDA interim layer functions as an electron-relaying mediator, whilst graphene (GR) obtained from in-situ GO reduction during the photocatalytic reaction serves as a terminal electron-trapping reservoir, synergistically facilitating the spatially vectorial charge separation/migration over TMC, thus endowing the TMC/PDDA/GR heterostructures with conspicuously enhanced visible-light-driven photoactivity toward CO2-to-syngas conversion. Our work would inspire judicious ideas for finely modulating charge transfer over polymer-mediated photosystems and benefit our fundamental understanding of solar CO2 conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.