Abstract

The influence of initial growth conditions and lattice matching on the deep level spectrum of n-ZnSe grown on GaAs by molecular-beam epitaxy is investigated by means of deep level optical spectroscopy. A detailed study of both the steady-state and transient photocapacitance allows us to measure optical threshold energies, concentrations, and emission rates of electronically active defects in the ZnSe layer. Several deep levels are found in the ZnSe layer at Ec−Et=1.15, 1.46, 1.90, and 2.25 eV with concentrations in the 1012–1014 cm−3 range. When a 2-nm-thick composition controlled interface layer is grown at different beam pressure ratios prior to the ZnSe growth, a distinct decrease in the 1.46 eV level concentration with increasing Se content is found. Deposition of a lattice-matched InxGa1−xAs buffer layer prior to the ZnSe growth reduces the concentration of both the 1.15 and 1.46 eV levels by over an order of magnitude, indicating the role of lattice matching in the ZnSe overlayer. We also perform depth profiling of the defect distributions within the ZnSe overlayer to see the effect of the ZnSe thickness on the concentration of these levels as well as their possible association to the ZnSe/GaAs interface. We find that only the 2.25 eV level concentration shows a dependence on depth, increasing as the II–VI/III–V interface is approached.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.