Abstract

BackgroundROS are involved in the regulation of many physiological and pathological processes. Apoptosis and necrosis are processes that are induced by changes in concentrations of Reactive Oxygen Species (ROS). This study aims to detect and quantify the cellular response to changing ROS concentrations in the scope of apoptosis and necrosis. MethodsPhotobleaching of the fluorescent substrate fluorescein is used as a probe to detect the response of individual Jurkat-T-lymphocytes and Prostate-Cancer-3(PC-3) cells to oxidative stress, induced by hydrogen peroxide (H2O2). A kinetic model is proposed to describe changes in intracellular dye quantities due to photobleaching, dye hydrolysis, influx and leakage, yielding a single time-dependent decaying exponent+constant. ResultsFluorescein photobleaching is controlled and used to detect intracellular ROS. An increase in the decay time of fluorescence of intracellular fluorescein (slow photobleaching) was measured from cells incubated with H2O2 at 50μM. At higher H2O2 concentrations a decrease in the decay time was measured (fast photobleaching), in contrast to in vitro results with fluorescein and H2O2 in phosphate buffer saline (PBS), where the addition of H2O2 decreases the decay time, regardless of the irradiation dose used. ConclusionsThe anomalous, ROS-concentration dependent reduction of the photobleaching rate in cells, as opposed to solutions, might indicate on the regulation of the activity of intracellular oxidative-stress protective mechanisms, as seen earlier with other methods. SignificanceAssessing photobleaching via the time decay of the fluorescence intensity of an ROS-sensitive fluorophore may be adapted to monitor oxidative stress or ROS-related processes in cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.