Abstract

Super-resolution microscopy has been widely used to study protein interactions and subcellular structures in many organisms. In photosynthetic organisms, however, the lateral resolution of super-resolution imaging is only ~100 nm. The low resolution is mainly due to the high autofluorescence background of photosynthetic cells caused by high-intensity lasers that are required for super-resolution imaging, such as stochastic optical reconstruction microscopy (STORM). Here, we describe a photobleaching-assisted STORM method which was developed recently for imaging the marine picocyanobacterium Prochlorococcus. After photobleaching, the autofluorescence of Prochlorococcus is effectively reduced so that STORM can be performed with a lateral resolution of ~10 nm. Using this method, we acquire the in vivo three-dimensional (3-D) organization of the FtsZ protein and characterize four different FtsZ ring morphologies during the cell cycle of Prochlorococcus. The method we describe here might be adopted for the super-resolution imaging of other photosynthetic organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call