Abstract

Lichens are a symbiosis consisting of heterotrophic, fungal (mycobiont) and photosynthetic algal or cyanobacterial (photobiont) components. We examined photobiont sequences from lichens in the Ross Sea Region of Antarctica using the internal transcribed spacer region of ribosomal DNA and tested the hypothesis that lichens from this extreme environment would demonstrate low selectivity in their choice of photobionts. Sequence data from three targeted lichen species (Buellia frigida, Umbilicaria aprina and Umbilicaria decussata) showed that all three were associated with a common algal haplotype (an unnamed Trebouxia species) which was present in all taxa and at all sites, suggesting lower selectivity. However, there was also association with unique, local photobionts as well as evidence for species-specific selection. For example, the cosmopolitan U. decussata was associated with two photobiont species, Trebouxia jamesii and an unnamed species. The most commonly collected lichen (B. frigida) had its highest photobiont haplotype diversity in the Dry Valley region, which may have served as a refugium during glacial periods. We conclude that even in these extreme environments, photobiont selectivity still has an influence on the successful colonisation of lichens. However, the level of selectivity is variable among species and may be related to the ability of some (e.g. B. frigida) to colonise a wider range of habitats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.