Abstract

Background: Sepsis-induced acute lung injury (ALI) is a clinical syndrome characterized by excessive uncontrolled inflammation. Photobiomodulation such as light-emitting diode (LED) irradiation has been used to attenuate inflammatory disease. Objective: The protective effect of 630 nm LED irradiation on sepsis-induced ALI remains unknown. The purpose of this study was to investigate the role of 630 nm LED irradiation in sepsis-induced ALI and its underlying mechanism. Methods and results: C57BL/6 mice were performed cecal ligation and puncture (CLP) for 12 h to generate experimental sepsis models. Histopathology analysis showed that alveolar injury, inflammatory cells infiltration, and hemorrhage were suppressed in CLP mice after 630 nm LED irradiation. The ratio of wet/dry weigh of lung tissue was significantly inhibited by irradiation. The number of leukocytes was reduced in bronchoalveolar lavage fluid. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results and enzyme-linked immunosorbent assay showed that 630 nm LED irradiation significantly inhibited the mRNA and protein levels of M1 macrophage-related genes in the lung of CLP-induced septic mice. Meanwhile, LED irradiation significantly inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation in the lung of septic mice. In vitro experiments showed that 630 nm LED irradiation significantly inhibited M1 genes mRNA and protein expression in THP-1-derived M1 macrophages without affecting the cell viability. LED irradiation also significantly inhibited the level of STAT1 phosphorylation in THP-1-derived M1 macrophages. Conclusions: We concluded that 630 nm LED is promising as a treatment against ALI through inhibiting M1 macrophage polarization, which is associated with the downregulation of STAT1 phosphorylation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call