Abstract
We present quantitative measurements of the photoassociation of cesium molecules inside a far-detuned optical dipole trap. A model of the trap depletion dynamics is derived which allows to extract absolute photoassociation rate coefficients for the initial single-photon photoassociation step from measured trap-loss spectra. The sensitivity of this approach is demonstrated by measuring the Franck-Condon modulation of the weak photoassociation transitions into the low vibrational levels of the outer well of the 0g- state that correlates to the 6s+6p3/2 asymptote. The measurements are compared to theoretical predictions. In a magneto-optical trap these transitions have previously only been observed indirectly through ionization of ground state molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.