Abstract

Well-defined cuprous oxide (Cu2O) thin films can be electrodeposited from an electrolyte containing copper (II) sulfate, lactic acid and sodium hydroxide. As Cu2O is a p-type semiconductor, it is possible to accelerate the process through illumination with light of sufficient energy (>2.1eV). Cyclic voltammetry and transient potentiostatic measurements were performed in a three-electrode setup with copper metalized wafers as a working electrode. Illumination was performed through the electrolyte, therefore absorption of light by the electrolyte had to be taken into consideration. Potentiostatic measurements with a blue LED as a light source have shown an tenfold increase in layer thickness in comparison to depositions without additional illumination. The deposited films were investigated with SEM analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.