Abstract

Whereas the commercialization of dye-sensitized solar cells (DSSCs) is finally proceeding taking advantage of their low cost and tunable optical features, such as colour and transparency for both indoor and building-integrated applications, the corresponding aqueous counterpart is still at its infancy. As the TiO2 electrode is a fundamental component for hybrid solar cells, this work investigates the effect of different molecular (α-terpineol, propylene carbonate) and polymeric (polyethylene oxide, polyethylene glycol, carboxymethyl cellulose and xanthan gum) additives that can be introduced into a commercial TiO2 paste for for screen-printing (or doctor blade). Among all, the addition of polyethylene glycol leads to the best cell performances, with markedly increased short-circuit current density (+18 %) and power conversion efficiency (+48 %) with respect to the pristine (commercial) counterpart. When further explored at different concentration levels, electrodes fabricated from polyethylene glycol-based pastes show different morphologies, thicknesses and performances, which are investigated through (photo)electrochemical, structural, physical-chemical and microscopic techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.