Abstract

We report a new fabrication method of a bilayer photoanode for dye sensitized solar cell having highly crystalline TiO2 with hollow spherical nanoparticles. The hollow spherical TiO2 nanoparticles in DSSC work not only as scattering layer but also as channel of electrolyte. This is due to the fact that incident light is scattered by the hollow spherical nanoparticle according to Mie theory and spherical hollow spheres allow the empty space inside each sphere to circulate the electrolyte more effectively. The nanoparticles were synthesized by hydrothermal method. The space inside the spheres was fully developed by Ostwald Ripening process and the size of hollow spheres was controlled by concentration of PVPs and hydrothermal synthesis conditions (time and temperature). The nanoparticle size and photoanode morphology of the hollow spheres were measured by scanning electron microscope (SEM). Finally, the power conversion efficiency of 6.26% has been achieved under AM 1.5G simulated sunlights (100 mW cm(-2)).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.