Abstract

We present a theoretical model of a cylindrical tunable liquid crystal lens based on the modulation of anchoring energy. The latter can be easily obtained using photoalignment techniques. The liquid crystal cell we propose exhibits strong anchoring at the top substrate and anchoring energy with a parabolic profile at the bottom substrate. The model describes the dependence of the focal length on the applied voltage and presents a theoretical study of the lens aberrations. The results obtained are of general relevance and can be used to optimize the performances of every type of liquid crystal lens with a parabolic profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.