Abstract

Highly efficient optical diffraction can be realized with the help of micrometer-thin liquid crystal (LC) layers with a periodic modulation of the director orientation. Electrical tunability is easily accessible due to the strong stimuli-responsiveness in the LC phase. By using well-designed photoalignment patterns at the surfaces, we experimentally stabilize two dimensional periodic LC configurations with switchable hexagonal diffraction patterns. The alignment direction follows a one-dimensional periodic rotation at both substrates, but with a 60° or 120° rotation between both grating vectors. The resulting LC configuration is studied with the help of polarizing optical microscopy images and the diffraction properties are measured as a function of the voltage. The intricate bulk director configuration is revealed with the help of finite element Q-tensor simulations. Twist conflicts induced by the surface anchoring are resolved by introducing regions with an out-of-plane tilt in the bulk. This avoids the need for singular disclinations in the structures and gives rise to voltage induced tuning without hysteretic behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.