Abstract

The multifunctional polypeptide cyclosporin synthetase (CySyn) remains one of the most complex nonribosomal peptide synthetase described. In this study we used a highly specific photoaffinity labeling procedure with the natural cofactor S-adenosyl-l-methionine (AdoMet), 14C-isotopically labeled at the Sδ methyl group to probe the concerted AdoMet-binding interaction of the N-methyltransferase (N-MTase) centers of CySyn. The binding stoichiometry for the enzyme–AdoMet complex was determined to be 1:7, which is in agreement with inferences made from analysis of the complementary DNA sequence of the simA gene encoding the CySyn polypeptide. The photolabeling of the AdoMet-binding sites displayed homotropic negative cooperativity, characterized by a curvilinear Scatchard plot with upward concavity. Although, the process of N-methyl transfer is not a critical event for peptide elongation, the destabilizing homotropic interactions between N-MTase centers that were observed may represent a mechanism whereby the enzyme preserves the proficiency of the substrate-channeling process of cyclosporin peptide assembly over a broad range of cofactor concentrations. Furthermore, we demonstrated the utility of the photolabeling procedure for tracking the enzyme during purification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.