Abstract

The photoreactive AMP analog, 8-azido-AMP, stimulated the activity of biodegradative threonine dehydratase of Escherichia coli in a reversible manner and, like AMP, decreased the Km for threonine. The concentrations required for half-maximal stimulation by AMP and 8-azido-AMP were 40 microM and 1.5 microM, respectively, and the maximum stimulation by 8-azido-AMP was 25% of that seen with AMP. Gel-filtration experiments revealed that 8-azido-AMP stabilized a dimeric form of the enzyme, whereas AMP promoted a tetrameric species. When present together, AMP and 8-azido-AMP showed mutual competition in influencing catalytic activity as well as the conformational state of the protein. Photolabeling of AMP-free dehydratase with 8-azido-[2-3H]AMP resulted in a time and concentration-dependent enzyme inactivation and concomitant incorporation of 8-azido-AMP into protein. At low 8-azido-AMP concentrations, incorporation of about 1 mol 8-azido-AMP/mol dehydratase tetramer was correlated with almost complete inactivation of the enzyme. The presence of AMP in the photolabeling reaction greatly reduced the extent of enzyme inactivation and 8-azido-AMP binding. Ultraviolet irradiation with 20 microM 3H-labeled 8-azido-AMP revealed one tryptic peptide, Thr230-Thr-Gly-Thr-Leu-Ala-Asp-Gly-Cys-Asp-Val-Ser-Arg242, with bound radioactivity. This peptide, labeled at low concentration of 8-azido-AMP, most likely represents the AMP-binding region on the dehydratase molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.