Abstract

To examine the interaction of mammalian base excision repair (BER) enzymes with DNA intermediates formed during BER, we used a novel photoaffinity labeling probe and mouse embryonic fibroblast cellular extracts. The probe was formed in situ, using an end-labeled oligonucleotide containing a synthetic abasic site; this site was incised by apurinic/apyrimidinic endonuclease creating a nick with 3'-hydroxyl and 5'-reduced sugar phosphate groups at the margins, and then a dNMP carrying a photoreactive adduct was added to the 3'-hydroxyl group. With near-UV light (312 nm) exposure of the extract/probe mixture, six proteins were strongly labeled. Four of these include poly(ADP-ribose) polymerase-1 (PARP-1) and the BER participants flap endonuclease-1, DNA polymerase beta, and apurinic/apyrimidinic endonuclease. The amount of the probe cross-linked to PARP-1 was greater than that cross-linked to the other proteins. The specificity of PARP-1 labeling was examined using various competitor oligonucleotides and DNA probes with alternate structures. PARP-1 labeling was stronger with a DNA representing a BER intermediate than with a nick in double-stranded DNA. These results indicate that proteins interacting preferentially with a photoreactive BER intermediate can be selected from the crude cellular extract.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.