Abstract

Purified rabbit and sheep sex hormone-binding globulins (SHBGs) were photolabeled by Delta 6-testosterone. The maximal levels of specific incorporation were respectively 0.33 and 0.30 mol of label/mol of homodimer. Tryptic cleavage of photolabeled SHBGs gave a single radioactive peptide for rabbit SHBG and two major radioactive peptides S1 and S2 for sheep SHBG. Edman sequencing of the photolabeled peptide of rabbit SHBG revealed a single sequence corresponding to peptidic fragment Leu-118-Lys-134. Subcleavage of this peptide with elastase led to a single radioactive peptidic fragment corresponding to dipeptide Met-133-Lys-134, identified by mass spectrometry, while deletion of the C-terminal residue with carboxypeptidase B showed that all the radioactivity remained on peptide Leu-118-Met-133, thus demonstrating that photolabeling occurred exclusively on Met-133, the only residue common to the two radioactive subcleaved peptides. Edman sequencing of peptides S1 and S2 of sheep SHBG showed a same single sequence corresponding to residues Gln-126-Arg-140 which contained no identifiable phenylthiohydantoin derivative at cycle 14, thus indicating that in both cases the corresponding Met-139 residue is the main site of photolabeling, as confirmed for peptide S1 by the presence at this cycle of a major peak of radioactivity while in peptide S2 the photoattachment of Delta 6-testosterone was found labile in the conditions of sequencing. The photolabeled peptide S1 was characterized by mass spectrometry which showed the covalent fixation of one mole of Delta 6-testosterone and the presence of a biantennary oligosaccharide attached at Asn-133, which suggests that the steroid-binding site is probably not deeply buried in the SHBG homodimer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call