Abstract
Steroid-binding proteins unrelated to the classical nuclear receptors have been proposed to play a role in non-genomic actions of the17α-alkylated testosterone derivative (17α-AA) stanozolol (ST). We have previously reported that male rat liver endoplasmic reticulum contains two steroid-binding sites associated with high molecular mass oligomeric proteins: (1) the ST-binding protein (STBP); and (2) the low-affinity glucocorticoid-binding protein (LAGS). To further explore the role of LAGS on the mechanism of action of ST, we have now studied: (1) the interaction of ST and its hydroxylated metabolites with solubilized LAGS and the cytosolic glucocorticoid receptor (GR); and (2) the effects of hormones on the capability of STBP to bind ST. We found that, unlike 17α-methyltestosterone, neither ST nor its hydroxylated metabolites bind to GR. However, the 16β-hydroxylation of ST significantly increases the capability of LAGS to bind ST. Interestingly, 3′-hydroxylation of ST abrogates the capability of LAGS to bind ST. ST ( k i =30 nM) and 16β-hydroxystanozolol ( k i =13 nM) bind with high affinity to LAGS, and are capable of accelerating the rate of dissociation of previously bound dexamethasone from the LAGS. STBP and LAGS are strongly induced by ethinylestradiol. However, unlike STBP, LAGS is regulated by thyroid hormones and growth hormone, which proves that these steroid-binding activities are associated with different binding sites. These findings seem to suggest a novel mechanism for ST whereby membrane-associated glucocorticoid-binding activity is targeted by the 16β-hydroxylated metabolite of ST. ST and its 16β-hydroxylated metabolite modulate glucocorticoid activity in the liver through negative allosteric modulation of LAGS, with the result of this interaction an effective increase in classical GR-signaling by increasing glucocorticoid availability to the cytosolic GR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Steroid Biochemistry and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.