Abstract

Five GTP binding proteins in rat cerebral cortex synaptic membranes were identified by photoaffinity labelling with [3H] or [32P](P3-azido-anilido)-P1-5' GTP (AAGTP). When AAGTP-treated membranes were incubated with colchicine or vinblastine and subsequently washed, a single AAGTP-labelled protein of 42 kD was released into the supernatant. About 30% of the total labelled 42-kD protein was released into supernatants from membranes pretreated with colchicine or vinblastine compared with 15% released from control membranes. The amount of adenylate cyclase regulatory subunit (G unit) remaining in these membranes was assessed with reconstitution studies after inactivating the adenylate cyclase catalytic moiety with N-ethylmaleimide (NEM). Forty to fifty percent of functional G units were lost from membranes treated with colchicine prior to washing. This 40-50% loss of functional G unit after colchicine treatment corresponds to the previously observed 42% loss of NaF and guanylyl-5'-imidodiphosphate [Gpp(NH)p]-activated adenylate cyclase. Release of the AAGTP-labelled 42-kD protein from colchicine-treated synaptic membranes is double that from lumicolchicine-treated membranes. This colchicine-mediated release of 42-kD protein correlates with a doubling of functional G unit released from synaptic membranes after colchicine treatment. These findings suggest multiple populations of the G unit within the synaptic plasma membrane, some of which may interact with cytoskeletal components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.