Abstract

The degradation of fluoxetine (FLX) emerging pollutant and the formation of by-products, potentially present in environmental ecosystems, was investigated from photocatalytic processes. Applying different synthesis methods, nitrogen (TiN) or boron (TiB)-modified TiO2 presented oxygen vacancies (Vö) responsible for generating intermediate energy levels, which acted as shallow traps to minimize the recombination processes and maintain the efficient separation of charge carriers. All photocatalysts showed the potential to produce hydroxyl radicals (•OH) from the oxidation of water in h+(VB), achieving 100% of RhB degradation under UV or visible irradiation. For the degradation of FLX, an alternative mechanism mediated by one of the by-products was confirmed after LC-MS-Q-TOF analysis. The protonation, dehalogenation and hydroxylation steps of FLX (m/z[H+] =310.1419) produce the transformation products TP8 (m/z[H+] = 310.1430), TP6 (m/z[H+] = 286.1454), and TP9 (m/z = 161.0221 (-ESI)), respectively. Other by-products have been identified after photodegradation, and their presence in FLX-contaminated ecosystems cannot be ignored. Therefore, high-performance photocatalysts obtained in this study are real alternatives for the environmental remediation of organic pollutants in aquatic ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.