Abstract

The effect on the therapeutic efficacy of Pt(II) complexes on combining non-steroidal anti-inflammatory drugs (NSAIDs) is an attractive strategy to circumvent chronic inflammation mediated by cancer and metastasis. Two square-planar platinum(II) complexes: [Pt(dach)(nap)Cl] (1) and [Pt(dach)(nap)2] (2), where dach = (1R,2R)-dichloro(cyclohexane-1,2-diamine) and NSAID drug naproxen (nap), have been designed for studying their biological activity. The naproxen bound to the Pt(II) centre get released upon photoirradiation with low-power UV-A light as confirmed by the significant enhancement in emission intensities of the complexes. The compounds were evaluated for their photophysical properties, photostability, reactivity with 5′-guanosine monophophosphate (5′-GMP), interactions with CT-DNA and BSA, antioxidant activity and reactive oxygen species mediated photo-induced DNA damage properties. ESI-MS studies demonstrated the formation of bis-adduct with 5′-GMP and the formation of PtII-DNA crosslinks by gel electrophoretic mobility shift assay and ITC studies. The interaction of the complexes 1 and 2 with the CT-DNA exhibits potential binding affinity (Kb ∼ 104 M−1, Kapp∼ 105 M−1), implying intercalation to CT-DNA through planar naphthyl ring of the complexes. Both the complexes also exhibit strong binding affinity towards BSA (KBSA∼ 105 M−1). The complexes exhibit efficient DNA damage activity on irradiation at 365 nm via formation of singlet oxygen (1O2) and hydroxyl radical (•OH) under physiological conditions. Both the complexes were cytotoxic in dark and exhibit significant enhancement of cytotoxicity upon photo-exposure against HeLa and HepG2 cancer cells giving IC50 values ranging from 8 to 12 μM for 1 and 2. The cellular internalization data showed cytosolic and nuclear localization of the complexes in the HeLa cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.