Abstract

In this study, hierarchical self-assembly of photocatalytic nanodisks through non-covalent interactions between spinach-extracted chlorophyll molecules and trimethylammonium hydroxide-coated magnetic iron oxide nanoparticles was discussed. Combination of chlorophyll molecules with iron oxide nanoparticles generated an alteration in light absorption at both visible and near-IR region with accompanying enhancement in fluorescence emission. Further, photocatalytic role of resulting molecular assembly was studied by means of the photoinduced degradation of methylene blue dye under UV light and direct sun irradiation at neutral pH. In order to enhance the long-term stability of the hybrid nanocatalyst, commercially available cellulose membrane was used as a support and magnetic recovery and reusability was achieved where the nanocatalyst retained more than 90 % of its efficiency even after four cycles. This simple strategy could initiate the development of new materials for wastewater treatment including membrane-based technologies. On the other hand, their sunlight-induced photocatalytic activity could easily be conducted to dye-synthesized solar cells or their enhanced photoluminescence can provide a strong basis for future bioimaging tools.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.