Abstract

The surprising discovery of carbon monoxide (CO) as a signaling molecule in mammalian physiology has recently raised interest in this toxic gas among researchers in biochemical and pharmaceutical community. CO is endogenously produced mainly from catabolism of heme by the enzyme heme oxygenase (HO) and participates in a myriad of anti-inflammatory, anti-proliferative, and vasoregulatory pathways. In animal models, low doses of CO have exhibited beneficial effects in suppression of organ graft rejection and safeguarding the heart during reperfusion after cardiopulmonary bypass surgery. The salutary effects of CO have naturally drawn attention of the pharmaceutical industry for its use as a cytoprotective agent. Safety-related concerns of the use of this noxious gas have prompted research in the area of syntheses of CO-releasing molecules (CORMs) and to date, several metal carbonyls (metal complexes of CO) have been employed as CORMs in promoting prolonged (and safe) delivery of low doses of CO to cellular targets. Because many carbonyl complexes release CO upon illumination, investigators have recently began to explore the possibility of “controlled CO delivery” through the use of light. During the past few years, a number of photoactive CORMs or “photoCORMs” have been synthesized that release CO upon illumination with UV or visible light. The utility of these photoCORMs in CO delivery has also been confirmed. Novel design principles for isolation of photoCORMs have started to appear in recent reports. Scrutiny of the literature reveals the emergence of a new exciting area of drug development in such efforts. The potential of photoCORMs as CO-donating pharmaceuticals along with a brief overview of the physiological roles of CO is presented in this review.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.